Impaired head direction cell representation in the anterodorsal thalamus after lesions of the retrosplenial cortex.
نویسندگان
چکیده
The retrosplenial cortex (RSP), a brain region frequently linked to processes of spatial navigation, contains neurons that discharge as a function of a rat's head direction (HD). HD cells have been identified throughout the limbic system including the anterodorsal thalamus (ADN) and postsubiculum (PoS), both of which are reciprocally connected to the RSP. The functional relationship between HD cells in the RSP and those found in other limbic regions is presently unknown, but given the intimate connectivity between the RSP and regions such as the ADN and PoS, and the reported loss of spatial orientation in rodents and humans with RSP damage, it is likely that the RSP plays an important role in processing the limbic HD signal. To test this hypothesis, we produced neurotoxic or electrolytic lesions of the RSP and recorded HD cells in the ADN of female Long-Evans rats. HD cells remained present in the ADN after RSP lesions, but the stability of their preferred firing directions was significantly reduced even in the presence of a salient visual landmark. Subsequent tests revealed that lesions of the RSP moderately impaired landmark control over the cells' preferred firing directions, but spared the cells directional stability when animals were required to update their orientation using self-movement cues. Together, these results suggest that the RSP plays a prominent role in processing landmark information for accurate HD cell orientation and may explain the poor directional sense in humans that follows damage to the RSP.
منابع مشابه
Path integration and lesions within the head direction cell circuit: comparison between the roles of the anterodorsal thalamus and dorsal tegmental nucleus.
Experiments were designed to determine whether 2 regions of the head direction cell circuit, the anterodorsal thalamic nucleus (ADN) and the dorsal tegmental nucleus (DTN), contribute to navigation. Rats were trained to perform a food-carrying task with and without blindfolds prior to receiving sham lesions or bilateral lesions of the ADN or DTN. ADN-lesioned rats were mildly impaired in both v...
متن کاملEnvironmental Anchoring of Head Direction in a Computational Model of Retrosplenial Cortex.
Allocentric (world-centered) spatial codes driven by path integration accumulate error unless reset by environmental sensory inputs that are necessarily egocentric (body-centered). Previous models of the head direction system avoided the necessary transformation between egocentric and allocentric reference frames by placing visual cues at infinity. Here we present a model of head direction codi...
متن کاملTesting the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory.
The present study: (1) tested the importance of the retrosplenial cortex for learning a specific heading direction and distance and, (2) determined if lesion size could explain apparent inconsistencies in the results of different research groups. Dark agouti rats received either 'complete' cytotoxic retrosplenial cortex lesions or 'standard' lesions, the latter sparing the caudal retrosplenial ...
متن کاملAnticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction.
Several regions in the rat brain contain neurons known as head-direction cells, which fire only when the rat's head is facing in a specific direction. Head-direction cells are influenced only by the direction of the head with respect to the static environmental surroundings, and not by the position of the head relative to the body. Each head-direction cell has its own preferred direction of fir...
متن کاملSingle-cell persistent activity in anterodorsal thalamus.
The anterodorsal nucleus of the thalamus contains a high percentage of head-direction cells whose activities are correlated with an animal's directional heading in the horizontal plane. The firing of head-direction cells could involve self-sustaining reverberating activity in a recurrent network, but the thalamus by itself lacks strong excitatory recurrent synaptic connections to sustain tonic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 15 شماره
صفحات -
تاریخ انتشار 2010